

LHCb's Real-Time Alignment in Run II

<u>V. Batozskaya</u> and K. Klimaszewski, on behalf of the LHCb collaboration National Centre for Nuclear Research, Warsaw, Poland

LHC Parameters from Run I to Run II*

• Higher energy: $\sqrt{s} = 7/8 \text{ TeV} \rightarrow 13 \text{ TeV}$

- 15% increase of inelastic collision rate
- 20% increase of multiplicity per collision • 60% increase of $\sigma_{c\bar{c}}$ and $\sigma_{b\bar{b}}$
- More frequent collisions: $\Delta t = 50 \text{ ns} \rightarrow 25 \text{ns}$
- Similar instantaneous $L = 4 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Trigger Schemes

	LHCb Run I Trigger Diagram				LHCb 2015 Trigger Diagram			
	40 MHz bunch crossing rate				40 MHz bunch crossing rate			
	小 小 小				∇	∇	∇	
	L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures				L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures			
	450 kHz h [±]	400 kHz µ/µµ	150 kHz e/γ		450 kHz h [±]	400 kHz µ/µµ	150 kHz e/γ	
	Defer 20% to disk				Software High Level Trigger			
					Partial event reconstruction, select displaced tracks/vertices and dimuons			
	Software High Level Trigger							
	29000 Logical CPU cores Offline reconstruction tuned to trigger				Buffer events to disk, perform online detector calibration and alignment			
					•	J L		

Magnet **RICH2 RICH1** VELO

Alignment of Detector Elements

- Degrees of freedom: **3 translations and 3** rotations for each element
- Stations, layers and modules can be aligned independenly
- Number of elements to be aligned:
 - VELO: 86
 - **• TT:** 135
 - **IT: 64**
 - OT: 496
 - Muons: 10

 Constrained to nominal, survey and/or previously aligned position

VELO Alignment

- VELO open during LHC filling and closed at the beginning of each fill when beam is declared stable
- Vertex constraint applied for the 2 half alignment
- Excellent IP (11.6 μm at high p_T) and PV resolution (13 µm for PV with 25 tracks)
- Variations observed between fills during the Run I: • x: RMS 3.7 μ m; max var. \pm 9 μ m • y: RMS 2.5 μm; max var. ± 6 μm

VELO 2 half alignment stability in Run II

stable beams

The LHCb Detector

Advantages of Real-Time Alignment

- More effective trigger selection
- Minimizes the differences between online and offline performances
- Improves the stability of the alignment quality
- Early physics analysis performed directly on the trigger output

Real-Time Alignment

- Automatic evaluation at the beginning of each fill
- Track reconstruction parallelised on several nodes of the HLT farm
- χ2 minimization on one single node
- Compute the new alignment constants in a few minutes
- Special HLT1 selection line enriched with well known particle decays ($D^0 \rightarrow K\pi$, $J/\psi \rightarrow \mu\mu$, etc.)
- Two kind of alignment tasks (same state diagram):

Real-Time Tracking Alignment

VELO: performed at the beginning of each fill, updated immediately if needed

Tracker system: run after the VELO for each fill and updated every few weeks

Muon stations: run after the tracker for each fill, variation not expected but run as monitoring

Analyzer performs the track reconstruction based on the alignment constants computed by the iterator (~1700 nodes)

Tracker Alignment

- Variation due to magnet polarity change and some other additional small variation over time
- Magnet polarity changed every few weeks
- Time variation of the alignment constants:
- Translations within 100 μm
- Rotations within 1 mrad
- A misalignment in the tracking system affects both the momentum scale and the momentum resolution

RICH Mirror Alignment

• The variation of the Cherenkov angle is fitted as function of the polar angle:

Iterator collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration (single node)

Tracking Alignment Method

- \vec{a} alignment parameters; \vec{r}_{t} residual; \vec{V} covariance matrix of measurement coordinates;
 - R covariance matrix of residuals after track fit

The Kalman filter is used to minimise the χ^2 taking into account full track model

 Align multiple detectors at once Iterative procedure

Advantages:

- Correctly take multiple scattering and energy loss into account
- Use magnetic field information
- Mass and vertex constraints can be applied, in addition to the canonical constraints

Alignment Impact on Physics Performance

$\Delta \theta = \theta_x \cos(\varphi) + \theta_y \sin(\varphi)$

where the extracted θ_x and θ_y values correspond to a misalignment in the HPD detector plane

Mirror pairs to align: 16 for RICH1 and 94 for RICH2

The alignment constants (1090) are evaluated for each fill

References

- R. Aaij et al., Int.J.Mod.Phys. A30, 1530022 (2015).
- R. Aaij et al., JINST 9, 09007 (2014).
- W.D. Hulsbergen, Nucl.Instrum.Meth. A600 (2009) 471.

• J. Amoraal et al., Nucl.Instrum.Meth. A712 (2013) 48. • M. Adinolfi et al., Eur.Phys.J. C73, 2431 (2013).

* Performance estimates based on expectations from simulations. The results obtained in the LHCb acceptance

The Third Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia

varvara.batozskaya@cern.ch