Measurements of the phase ϕ_s at LHCb

V. Batozskaya¹ on behalf of LHCb collaboration

¹National Centre for Nuclear Research, Warsaw, Poland

XXIII Cracow Epiphany Conference 9-12 January 2017

Large Hadron Collider beauty Detector

[JINST 3 (2008) S08005]

- Momentum resolution: $\Delta p/p = 0.5\%$ at 5 GeV/c to 1.0% at 200 GeV/c
- Impact parameter resolution: 20 μ m for high P_T tracks
- Decay time resolution: \sim 45 fs
- Invariant mass resolution: $\sim 8 \text{ MeV/c}^2$ for $B \rightarrow J/\psi X$ decays with J/ψ mass constraint
- $\mathcal{L} = 3 \text{ fb}^{-1}$ collected in Run I at $\sqrt{s} = 7-8 \text{ TeV}$

Violation of the \mathcal{CP} symmetry

 \mathcal{CP} symmetry = \mathcal{C} (charge conjugation) $\times \mathcal{P}$ (parity)

Direct (in decay amplitudes) $\phi_D = \arg(V_{cs}V_{cb}^*)$ * Ignoring sub-leading penguin contributions $V_{cb}^*(\lambda^2) \xrightarrow{c} J/\psi$ $B_s^0 \xrightarrow{b} V_{cs}(1)$ $W^* \xrightarrow{s} h^+h^-$

Interference between direct decays and decays with mixing

$$\begin{split} \phi_{s}^{SM} &= \phi_{M} - 2\phi_{D} = -2arg(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}) = -2\beta_{s} \\ \phi_{s}^{SM} &= -0.0376^{+0.0008}_{-0.0007} \text{ rad [CKMFitter]} \\ \phi_{s} &= \phi_{s}^{SM} + \Delta\phi_{s} + \delta_{s}^{NP} \end{split}$$

- $B_s^0 \rightarrow J/\psi \phi$ is P \rightarrow VV decay \Rightarrow final state is an admixture of CP-even and CP-odd eigenstates
- Amplitudes:
 3 P-wave (A₀, A_⊥, A_{||}) + 1 S-wave (A_S)
- Time dependent angular $(\theta_K, \theta_\mu, \varphi)$ tagged $(\varepsilon D^2 = (3.73 \pm 0.15)\%)$ analysis

ď

$$\frac{{}^{4}\Gamma(B_{s}^{0}
ightarrow J/\psi\phi)}{dtd\Omega}\propto\sum_{k=1}^{10}h_{k}(t)f_{k}(heta_{K}, heta_{\mu},\phi)$$

• Fit is carried out in 6 bins of $m(K^+K^-)$ region to measure S-wave contribution

HICP R

[PRL 114 (2015) 041801]

$$\phi_s$$
 in $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-)$

[PRL 114 (2015) 041801]

- Consistent with SM predictions
- Decay time efficiency, angular efficiency and background subtraction give dominant contribution to systematic uncertainty
- Most precise measurement of lifetime parameters from $B^0_s
 ightarrow J/\psi K^+K^-$
- ★ Most precise measurement of ϕ_s from combination of $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

 ϕ_s in $B_s^0 \to \psi(2S)(\to \mu^+\mu^-)\phi(\to K^+K^-)$

- Replace J/ψ → ψ(2S). The B⁰_s yield is decreased by factor ~ 20
- Prompt J/ψ events are used to calibrate decay time resolution model
- Decay time efficiency is determined using control $B^0 \rightarrow \psi(2S) K^*(892)^0 (\rightarrow K^+ \pi^-)$ channel
- Flavour tagging efficiency is $(3.88 \pm 0.18)\%$

$$\begin{split} \phi_s &= 0.23^{+0.29}_{-0.28}(\text{stat}) \pm 0.02(\text{syst}) \text{ rad} \\ \\ \Gamma_s &= 0.668 \pm 0.011(\text{stat}) \pm 0.006(\text{syst}) \text{ ps}^{-1} \\ \\ \Delta\Gamma_s &= 0.066^{+0.041}_{-0.044}(\text{stat}) \pm 0.007(\text{syst}) \text{ ps}^{-1} \\ \\ |\lambda| &= 1.045^{+0.069}_{-0.050}(\text{stat}) \pm 0.007(\text{syst}) \end{split}$$

• Consistent with
$$B_s^0 \rightarrow J/\psi \phi$$
 fit results

• Limited size of data sample

• Systematic uncertainty is
$$< 0.2\sigma_{stat}$$
 except for $\Gamma_s \ (\sim 0.6\sigma_{stat})$

[PLB 762 (2016) 253-262]

Observation of $B^0_s ightarrow \eta_c \phi$

- Dominantly decay through the $ar{b}
 ightarrow ar{c}car{s}$ transition
- Purely \mathcal{CP} -even state \Rightarrow no angular analysis is required
- η_c is reconstructed into $p\bar{p}$, $K^+K^-\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-$ and $K^+K^-K^+K^-$ final states

) J/ψ decaying to same final states is used as normalisation

$\phi_{\textit{s}}$ and lifetime experimental measurements

- $\phi_s^{c\bar{c}s} \stackrel{\text{SM}}{=} -0.0376^{+0.0008}_{-0.0007}$ rad [CKMFitter]
- $\Delta\Gamma_s \stackrel{\text{SM}}{=} 0.088 \pm 0.020 \text{ ps}^{-1}$ [M. Artuso et al, arXiv:1511.09466]

HFAG combination $\phi_s^{c\bar{c}s} = -0.030 \pm 0.033 \text{ rad}$ $\Delta\Gamma_s = 0.085 \pm 0.006 \text{ ps}^{-1}$ $\Gamma_s = 0.6648 \pm 0.0020 \text{ ps}^{-1}$

Mode	ϕ_s [rad]	$\Delta\Gamma_s \ [ps^{-1}]$	Exp.	Reference
$B_s^0 \rightarrow J/\psi\phi$	[-0.60,+0.12], 68% CL	$+0.068 {\pm} 0.026 {\pm} 0.009$	CDF (9.6 fb ⁻¹)	[PRL 109 (2012) 171802]
$B_{\rm s}^{\rm 0} \to J/\psi\phi$	-0.55 ^{+0.38} -0.36	$+0.163^{+0.065}_{-0.064}$	D0 (8.0 fb ⁻¹)	[PRD 85 (2012) 032006]
$B_s^0 \rightarrow J/\psi\phi$	$-0.090{\pm}0.078{\pm}0.041$	$+0.085 \pm 0.011 \pm 0.007$	ATLAS (19.2 fb ⁻¹)	[JHEP 08 (2016) 147]
$B_s^0 \rightarrow J/\psi\phi$	$-0.075 {\pm} 0.097 {\pm} 0.031$	$+0.095\pm0.013\pm0.007$	CMS (19.7 fb ⁻¹)	[PLB 757 (2016) 97-120]
$B_s^0 \rightarrow J/\psi\phi$	$-0.058 {\pm} 0.049 {\pm} 0.006$	$+0.0805 \pm 0.0091 \pm 0.0033$	LHCb (3.0 fb ⁻¹)	[PRD 84 (2011) 033005]
$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$	$+0.070{\pm}0.068{\pm}0.008$	-	LHCb (3.0 fb ⁻¹)	[PLB 736 (2014) 186]
Above 2 combined	-0.010 ± 0.039 rad	-	LHCb (3.0 fb ⁻¹)	[PRL 114 (2015) 041801]
$B_s^{0} \rightarrow \psi(2S)\phi$	+0.23 ^{+0.29} 0.28 ±0.02	$+0.066^{+0.41}_{-0.44}\pm0.007$	LHCb (3.0 fb ⁻¹)	[PLB 762 (2016) 253-262]
$B_s^0 \rightarrow D_s^+ D_s^-$	$+0.02{\pm}0.17{\pm}0.02$	-	LHCb (3.0 fb ⁻¹)	[PRL 113 (2014) 211801]

Summary

- Using Run I data the most precise measurement of ϕ_s and lifetimes in the B_s^0 system has been made at LHCb
- Many active analysis to increase accuracy of CP-violating parameters measurement:
 - $B^0_{\underline{s}}
 ightarrow J/\psi \phi$ decay with $J/\psi
 ightarrow e^+e^-$
 - $B_s^0 \rightarrow J/\psi K^+ K^-$ decay above the ϕ mass region

- ...
- Future estimations for LHCb [LHCb-PUB-2014-040]

Decay mode	Run I (3 fb ⁻¹)	Run II (8 fb ⁻¹)	LHCb upgrade	Theory
$\sigma_{stat}(\phi_s)$ [rad]	(2010-2012)	(2015-2018)	(+2020, 50 fb ⁻¹)	limit
$B_s^0 \rightarrow J/\psi K^+ K^-$	0.049	0.025	0.009	~ 0.001
$B_s^0 \rightarrow J/\psi f_0(980)$	0.068	0.035	0.012	~ 0.01

• Penguin effects in B_s^0 mixing are under control: $\Delta \phi_s \sim 0.001 \pm 0.020$ rad

... but more work still be needed for LHCb upgrade

[JHEP 11 (2015) 082]

[PLB 742 (2015) 38-49]

Thank you for your attention

Backups

Violation of the \mathcal{CP} symmetry

• Direct (in decay amplitudes): $\phi_D = \arg(V_{cs} V_{cb}^*)$ * Ignoring sub-leading penguin contributions

- Mixing (indirect): $\phi_M = 2 \arg(V_{ts} V_{tb}^*)$
 - Described by phenomenological Schrödinger equation: $i\frac{d}{dt} \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} |B_{s}^{0}(t)\rangle \\ |\bar{B}_{s}^{0}(t)\rangle \end{pmatrix}$
 - Solutions give two mass eigenstates: B_H and B_L $|B_L\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle$ $|B_H\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle$
 - Mixing parameters

$$\Delta m_s = M_H - M_L \qquad \Delta \Gamma_s = \Gamma_L - \Gamma_H$$

$$\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2} \qquad \phi_{12} = \arg(-M_{12}/\Gamma_{12})$$

• Interference between direct decays and decays with mixing

$$b_s \equiv - rg(\lambda_f) \equiv - rg\left(rac{q}{p} rac{A_f}{ar{A}_f}
ight)
eq 0$$

$$\begin{split} \phi_s^{SM} &= \phi_M - 2\phi_D = -2arg(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}) = -2\beta_s \\ \phi_s^{SM} &= -0.0376^{+0.0008}_{-0.0007} \text{ rad [CKMFitter]} \end{split}$$

with mixing $|\lambda| \equiv \left| \frac{q}{p} \frac{A_f}{A_f} \right| \approx 1 \qquad \overline{B}_{(s)}^0 - c_{(s)}^0$

CKM - quark mixing matrix

The Cabibbo-Kobayashi-Maskawa matrix is a 3×3 unitary matrix which consists of information about flavour changing weak decays

Unitarity triangles

- In LHCb is used two types of tagging:
 - Same Side charge kaon which is correlated with B⁰_s
 - Opposite Side charge lepton or kaon from second B decay
- To calibrate the tagging algorithm similar and self tagging decays to signal are used: $B^+ \rightarrow J/\psi K^+$ for OS and $B_s^0 \rightarrow D_s^- \pi^+$ for SS
- Estimated the efficiency of the algorithm:
 - ▶ tagging efficiency ϵ_{tag} and corrected mistag probability ω
 - ► total efficiency $\epsilon_{eff} = \epsilon_{tag} (1-2\omega)^2 = (3.73 \pm 0.15)\%$ for $B_s^0 \to J/\psi\phi$